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1 Introduction

How much do hours of work and participation rates respond to changes in wages? For a long time,

there has been a tension between labour economists, who estimated labour supply elasticities from

individual level data at relatively low levels, especially for men, and macroeconomists, who, from

business cycle fluctuations of wages and hours, have argued that labour supply elasticities are relatively

large. Ljungqvist and Sargent (2014) have recently summarized this debate citing Carneiro and

Heckman (2003) and Prescott (2002)1. The controversy has stimulated a number of recent papers,

such as those published in the AER papers and proceedings in 20112, Rogerson and Keane (2012) and

Chetty et al. (2013), as well as many others. This debate is important because of the implications it

has for the effect of changes in the structure of labour income taxes on labour supply and to interpret

variations in employment and hours of work over the business cycle.

As argued by Blundell and MaCurdy (1999) and, more recently by Keane (2009), the term ‘wage

elasticity’ may refer to different quantities depending on the type of variation in wages one is consider-

ing. On the one hand, one can consider the effect of changes in the entire wage structure, as induced,

for instance, by a permanent changes in labour income taxation (or in the comparison between dif-

ferent countries). On the other, one can consider short term variations in wages, such as those one

observe over the business cycle, akin to what Blundell and MaCurdy (1999) and MaCurdy (1985)

define ‘evolutionary’ wage changes and that might be of particular interest to macroeconomists.3 Dif-

ferent type of variations in wages can be mapped in different theoretical concepts. The size of changes

in labour supply induced by evolutionary wage changes is related to the size of the Frisch (or marginal

utility of wealth constant) elasticity, while the size of changes induced by permanent shifts to the wage

structure are determined by the size of Hicksian or Marshallian elasticities, depending on whether the

changes in wages are compensated or not.4

In each of these cases, the labour supply response can be thought of in terms of the intensive (hours)

or the extensive (participation) margin. At the individual level, an elasticity is easily defined when

thinking of the intensive margin, while the same concept is a bit vaguer when thinking of the extensive

margin, especially when thinking of the Frisch elasticity that is supposed to keep the marginal utility

1Carneiro and Heckman (2003, p. 196): “In a modern society, in which human capital is a larger component of
wealth than is land, a proportional tax on human capital is like a nondistorting Henry George tax as long as labor
supply responses are negligible. Estimated intertemporal labor supply elasticities are small, and welfare effects from
labor supply adjustment are negligible.”

Prescott (2002, pp. 13, 1): “The differences in the consumption and labor tax rates in France and the United States
account for virtually all of the 30-percent difference in the labor input per working-age person. . . . if France modified
its intratemporal tax wedge so that its value was the same as the U.S. value, French welfare in consumption equivalents
would increase by 19 percent.”

2See Blundell et al. (2011), Chang et al. (2011), Chetty et al. (2011), Ljungqvist and Sargent (2011)
3A similar distinction is made by Chetty (2012) and Chetty et al. (2013).
4Blundell and MaCurdy (1999) and Keane (2009) discuss clearly how the concepts of Marshallian and Hicksian

elasticities, which are typically derived within the framework of a static model, can be put within the framework of a
dynamic life cycle model through the machinery of two-stage budgeting, as developed by Gorman (1959) and applied
to labour supply by MaCurdy (1981, 1983) and Blundell and Walker (1986).
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of wealth constant. For a macroeconomist, the next step is to think of how these individual responses

are reflected in changes in employment and hours of work. Indeed, in the case of the extensive margin,

one can think of the impact that a change in wages has on the fraction of individuals that change

their participation status, given the distribution of state variables. In this sense, the consideration of

the extensive margin brings to the forefront aggregation issues that have not figured prominently in

the discussion of labour supply elasticities. Aggregate participation responses to an aggregate shock

are bound to depend on the distribution of state variables in the cross section. As we discuss below,

aggregation issues can also be relevant for the intensive margin.

The extent of disagreement over the values of the labour supply elasticities depends on which

elasticity is being considered. Chetty (2012) finds that the estimates of the Hicksian elasticity from

micro data are consistent with macroeconomic estimates once we allow for small optimization frictions

such as adjustment costs or inattention of the order of 1%. By contrast, he finds that estimates of

the Frisch elasticities are inconsistent: estimates of the higher values of the Frisch elasticity from a

macroeconomic perspective such as Rogerson and Wallenius (2009) appear at odds with the microeco-

nomic estimates that some papers identify from temporary tax reforms or other natural experiments.

Many other recent contributions to understanding the disagreement over labour supply elasticities

have focused on the extensive margin, as discussed by Keane and Rogerson (2012) and Chetty (2012).

Rogerson and Wallenius (2009) argue that indivisible labour explains discrepancies between the micro

and macro elasticities. They develop a macro model in which elasticities at the extensive and intensive

margins are effectively unrelated. The explanation for this is that if there is fixed cost of entry into

the labour market the aggregate employment rate depends on the distribution of reservation wages.

In this paper, we step back from the concept of an elasticity as a single parameter. Instead, our

focus is on the determinants of different elasticities and how they relate to the quantities that are

discussed in the literature.The key feature of our approach is that we consider an integrated model of

intratemporal and intertemporal labour supply choices at both the intensive and the extensive margins.

We estimate the parameters of this model using rich data that include information on consumption.

We can then study how these parameters translate into individual elasticities of labour supply, both

in terms of hours of work and in terms of participation in the labour force, and to show how these

elasticities vary across individuals, and with characteristics such as age, number of children, and the

extent of uncertainty in the economy.5 Finally, we can study how aggregate labour supply responses

arise from individual behaviour.

The explicit consideration of even relatively simple preference specifications makes it apparent that

labour supply elasticities might be very heterogeneous in the population and over time. Aggregation

issues undermine the very concept of an aggregate labour supply elasticity. The concept of labour

5The distinction between estimating preference parameters and calculating elasticities in different economic environ-
ments is stressed by Keane and Rogerson (2011) and Domeji and Floden (2006).
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supply elasticity as a structural parameter is particularly elusive in the case of the extensive margin,

where by the very nature of the problem, responses might be time varying and aggregate differently

over the business cycle.

While specifying a utility function is unavoidably restrictive as it imposes on the data a substantial

amount of structure, it makes clear what aspects of the data generate certain levels of elasticities.

We use relatively flexible specifications that allow for different degrees of substitutability between

consumption and leisure, intertemporal substitutability, different utility costs of changes to labour

supply at the intensive and the extensive margin, a rich role for demographic and other variables.

To estimate preference parameters, we use a variety of approaches. In particular, we use different

sets of equilibrium conditions, and therefore different sources of variability to estimate different com-

ponents of preferences. In this respect, in the estimation of each set of parameters, we try to minimize

the assumptions needed for the identification of a specific set of parameters. We show that intra-

temporal first order conditions can be used to identify a set of preference parameters that determine

Marshallian and Hicksian labour supply elasticities. In order to get estimates of these parameters

one can in principle use cross-sectional variation in prices. It is important, however, to use variabil-

ity in wages that is plausibly exogenous and unrelated to preference heterogeneity. For this reason,

information from different labour markets, possibly over time, can be useful.

As discussed above, the consideration of intra-temporal first order conditions is useful in itself as

the elasticities that can be identified from such framework can be appropriate to judge the extent of

labour supply responses to changes in the entire structure of wages. Moreover, the Hicks elasticity

provides a lower bound on the Frisch elasticity. However, the intratemporal first-order condition is

uninformative about the separability of consumption and leisure and about how much larger the Frisch

elasticity is. To get a grip on these issues and estimate the parameters that allow the computation of

Frisch elasticities it is necessary to bring a new set of equilibrium conditions to bear on the data. In

particular, we use intertemporal Euler equations to identify these parameters. The data requirements

that are necessary for the identification of these parameters are obviously larger than those required

to identify the determinants of Marshallian or Hicksian elasticities. In particular, to avoid making

strong and unrealistic assumptions about the completeness of markets, we need a long time series of

data to identify the parameters of the Euler equation.

Finally, whilst in estimating the Euler equation we allow for the possibility of corner solutions

in hours (that is the possibility of the extensive margin), we do not model the extensive margin

explicitly. Therefore, Euler equation estimation cannot be used to estimate all the parameters of the

utility function and learn about the relevance of the extensive margin. The big advantage of the

Euler equation is that focusing on an equilibrium condition on a specific margin avoids the necessity

of solving the model explicitly to derive policy functions. It also avoids the necessity of specifying all
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the details of the dynamic problem solved by the individuals considered. However, by its very nature,

to study the extensive margin it is necessary to get such policy functions and, therefore, specify all

the details of the life cycle problem. In principle, the result one obtains on the extensive margin

depends on every single detail of the life cycle problem considered, from the nature of the income

process to pension arrangements, to the type of markets agents have access to. It should be stressed

however, that some of these channels have only a marginal effect and that we can perform a number of

robustness exercises, in addition to the standard matching of certain moments of the data. It should

also be stressed that the set of parameters that is identified from the equilibrium conditions discussed

above (the intratemporal ones and the Euler equation) are robust to the specific details of the life

cycle problem considered.

The second crucial step in our approach is going from the characterization of individual preferences

to the determination of ‘aggregate’ elasticities or elasticities defined at the macro level. In what follows,

we stress the difficulty of this exercise. In the case of the intensive margin, a number of important

non-linearities generate a substantial level of heterogeneity that makes aggregation very difficult. And

matters are considerably more complicated at the extensive margin. The presence of non-convexities

(such as fixed costs to go to work) induces some level of inertial behaviour (such as that studied in

Chetty (2012)) and clustering around kinks and corners of the budget constraint. The relevance of

this clustering for aggregate fluctuations depends on the size of shocks to wages and, crucially, on

how thick these clusters are. The extent to which individuals are spread around kinks and corners of

individual budget constraints is bound to depend on the history of individual and aggregate shocks.

Therefore the aggregate ‘extensive margin elasticity’ will be time varying and bound to be cyclical.

Responses are likely to be higher after a sequence of shocks with the same size than after a period of

relative calm.

Armed with our empirical estimates and the flexible labour life cycle model, we study female labour

supply in the US. The results we obtain are somewhat surprising. First, even when considering the

elasticity of labour supply at the intensive margin, we find a substantial amount of heterogeneity in

the size of elasticity. The elasticities vary by age, family composition, and the level of consumption.

There is no sense in which we can talk about an aggregate labour supply elasticity, even as an

approximation. Second, the size of these elasticities is considerably larger (in absolute value) than

many of the estimates reported in the literature. The Marshallian median elasticity for females about

0.70 and, as theory predicts, the figures for the Hicksian (1.08) and Frisch (1.35) elasticities are higher.

We believe that the higher values for our estimates of the elasticities is linked to the explicit use of

consumption data we make. Interestingly, our results are consistent with recent evidence presented

by Blundell et al. (2015), who use a completely different methodology from the one we employ and

data from the PSID. They estimate a 0.40 Marshallian elasticity and a Frisch elasticity of 1. While
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the method is different, they also use explicitly data on non-durable consumption. In regard to the

extensive margin Frisch elasticity we find that it is decreasing in age, being 0.8 at the age of 36. Third,

we find that consumption and hours are complements consistent with findings in Ziliak and Kniesner

(2005) for male labor supply. 6 Finally, the conclusion of our aggregation exercise is that the emphasis

of the literature on ‘the’ elasticity of labour supply to wages is misplaced. Not only does aggregation

fail even for relatively simple specification of preferences, but it fails in fundamental and economically

relevant ways in a variety of dimensions. Particularly important is the elasticity of participation to

wages: by the very nature of the decision, such elasticity is likely to be dependent not only on cross

sectional heterogeneity but to be time varying, with different values in different parts of the business

cycle. We show that estimated elasticities do vary over the business cycle by a substantial amount.

To the best of our knowledge, ours is the first systematic evidence of such a fact.

Our exercise is not without important caveats. In much of our analysis, we do not consider the

effect of tenure and experience on wages. Such effects can obviously be important, as labour supply

choices will change future wages and, therefore, future labour supply behaviour. Imai and Keane

(2004) argue that assuming wages are exogenous may introduce a downward bias in the estimates of

the Frisch elasticity. Indeed, they present estimates of such a parameter as high as 3.8 in a model that

accounts for returns to labor market experience.7 We notice, however, that if tenure effects happen

only through participation (rather than hours of work), the analysis we present of the intensive margin

goes through and our estimates of the Marshallian, Hicksian and Frisch elasticities for the number of

hours (conditional on working) are unbiased. What does change, in such a case, is the analysis of the

extensive margin. In section 7, we discuss the implications of introducing returns to tenure on the

extensive margin. It should be noted, however, that if the return to tenure operate on the number

of hours (rather than only on participation), we would need to change our analysis substantially. We

leave that for future work.

When estimating the Euler equation for consumption we also ignore the possibility of liquidity

constraints that might prevent households from being at the relevant intertemporal margin. As

discussed by Domeij and Floden (2006), omitting credit constrains may lead to underestimates of the

Frisch elasticity, and as shown by Low (2005) uncertainty over future wages may reduce individuals’

willingness to exploit inter-temporal substitution opportunities.

The rest of the paper is organized as follows. In section 2, we describe the life cycle model we

use as a framework for our analysis. We provide details of our preference specification and show

6Ziliak and Kniesner (2005) estimate the incentive effects of income taxation in a life-cycle model of consumption and
male labor supply that allows for non-separability between consumption and labour supply. They are able to identify
both within-period preference parameters and inter-temporal preference parameters. While their exercise focuses on
male labour supply and uses a different data source (the PSID), consistently with what we find, their result indicate that
consumption and labour supply are complement. Their estimates of compensated labour supply elasticities (Hicksian)
are also considerably larger than those previously reported in the literature.

7However, as discussed in Wallenius (2011), Imai and Keane (2004) base their identification on the early periods of
the life-cycle. The model does a less good job of accounting for the life-cycle profile at later ages using these estimates.
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how preference parameters can be mapped into static and intertemporal elasticities. In section 3 we

explain the various components of our empirical strategy to identify the preference parameters, that

is, using intraperiod first order conditions, intertemporal first order conditions and full structural

estimation. Section 4 describes the data and provides some descriptive statistics. Section 5 presents

and discusses the parameter estimates. In section 6 we report the implications of our estimates for

labour supply elasticities, distinguishing between Marshallian, Hicksian and Frisch elasticities. We

also discuss aggregate responses on the extensive margin and, more generally, the aggregation issues

that are central to our argument. Section 7 extends the analysis to include returns to experience and

section 8 concludes.

2 A life cycle model of female labour supply

To study the elasticity of female labour supply to wages, we use a rich model of female labour supply

choices embedded in a life cycle framework. A unitary household makes choices about consumption

and female labour supply, given exogenous processes for male earnings and female wages and an

intertemporal budget constraint. Both the intensive and extensive margins are meaningful because of

the presence of fixed costs of going to work (possibly related to family composition) and/or because

of the presence of preference costs specifically related to participation.

We assume that couples are expected utility maximisers and choose consumption, saving and

female labour supply to solve the following dynamic problem under uncertainty:

max
c,l

Et

T∑
j=0

βju (ct+j , lt+j , Pt+j ; zt+j , ζt+j , χt+j) (1)

subject to an intertemporal budget constraint:

At+1 = Rt+1

(
At +

(
wft (H − lt)− F (at)

)
Pt + wmt h̄− ct

)
(2)

where ct is consumption, lt female labour supply, At are beginning of period assets, Rt is the interest

rate, F the fixed cost of work which depends on at, the age of the youngest child. Pt is an indicator

of labour force participation. zt+j is a vector of observable variables (such as family composition)

and χt+j and ζt+j represent unobservable taste shifters. Female wages are given by wft , and husband

wages are given by wmt , with fixed husband hours of h̄. In any period, households are able to borrow

against the minimum income they can guarantee for the rest of their lives.

We denote the child care units needed by a family whose youngest child is age at by G(at) and the

price of each unit of child care by p. Therefore, the total child care cost faced by a household when

women participate in the labor market is given by

F (at) = pG(at) + F̄ (3)
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We estimate the function G(at) from expenditure data of households with children of the relevant

ages. The presence of fixed costs of going to work and discrete utility costs introduces the possibility

that some women will decide not to work at all, especially at low levels of productivity. By the same

token, it will be unlikely that women who do choose to work will work only very few hours.

We assume men always work. Male earnings are given by

lnwmt = lnwm0 + αm1 t+ αm2 t
2 + vmt (4)

vmt is a random process that we describe below.

In this baseline specification, female wages are given by

lnwft = lnwf0 + lnhft + vft (5)

where hft is the level of female human capital at the start of the period and νft is a permanent

productivity shock. There is an initial distribution of wages, wf0 .

In our baseline specification we assume that human capital does not depend on the history of

labour supply and evolves exogenously:

lnhft = αf1 t+ αf2 t
2 (6)

We relax the assumption that there are no returns to experience in section 7. We distinguish

the cases where returns to experience depend on participation and where returns depend on hours

worked. Much of our estimation steps will go through if returns to experience operate through the

participation margin rather than through the hours of work margin.

Both female and male wages, wft and wmt , in the household are subject to permanent shocks,

vft and vmt , that are positively correlated. In particular we assume

vt = vt−1 + ξt (7)

ξt = (ξft , ξ
m
t ) ∼ N

(
µξ, σ

2
ξ

)
(8)

µξ = (−
σ2
ξf

2
,−

σ2
ξm

2
) and σ2

ξ =

(
σ2
ξf ρξf ,ξm

ρξf ,ξm σ2
ξm

)
In this framework, innovations to wages and to interest rates constitute the uncertainty that

households face. They could also face uncertainty over fertility and child care costs. We assume

that they know they will remain married. When we proceed to step 3 of our estimation through

solving numerically the model, we will impose additional restrictions, namely that the interest rate is

constant and fertility is known. Further, from the point of view of the consumer, current taste shocks

are observed. From the point of view of the econometricians, there are several sources of unobserved
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variation: the innovations to wages and earnings, innovations to interest rates and the unobserved

heterogeneity terms.

So far we have described the process faced by an individual household. This household takes

the stochastic processes that generate female wages, male earnings and possibly interest rates as

given. In making predictions about future factor prices (wages and interest rates), the household will

consider the current level of the stochastic variables and make the best use of this information. We

assume that households are subject to both idiosyncratic and aggregate shocks and so the shocks that

affect individual households at a given point in time are correlated. However, from the household’s

perspective, they do not distinguish aggregate and idiosyncratic shocks and condition their future

expectations only on their own observed wage realisations. Households have no insurance markets to

smooth aggregate or idiosyncratic shocks and must rely on self-insurance. We assume there are no

explicit borrowing constraints.

Our framework is not a general equilibrium one: we do not construct the equilibrium level of wages

(and interest rates). However, we study aggregate female labour supply and its elasticity to wages.

We do so by simulating a large number of households and aggregating explicitly their behaviour.

2.1 Preference Specification

We need to specify the functional form for the direct utility function for our estimation. Although

this parametric specification is necessary, we keep it as general and flexible as possible, allowing for

example, for non-separability between consumption and leisure both at the intensive and extensive

margin, and for the effect of demographic variables and unobserved taste shocks to affect utility.

We start by defining the aggregator:

Mt =

(
αt(zt, χt)(c

1−φ
t − 1)

1− φ
+

(1− αt(zt, χt)) (l1−θt − 1)

1− θ

)

where zt is a vector of observable demographic variables and the term χt represents ‘taste shocks’

or ‘unobserved heterogeneity’ in within period preferences. The function αt is specified so that it is

always between 0 and 1:

αt =
1

1 + exp(ψzt + χt)
(9)

We assume that the utility function is of the form:

u (ct, lt) =
M1−γ
t

1− γ
exp(πzt + ϕPt + ζt) (10)

where the vector of observable variables zt appears again and ζt is another taste shock which affects

intertemporal preferences; this is different from but not necessarily uncorrelated with χt. Notice that

the observable variables that appear in equations (9) and (10) need not be the same. These terms

8



(and the two different taste shocks χt and ζt) play different roles as they operate at the intratemporal

and intertemporal margins respectively.

We require that the MRS between consumption and leisure is decreasing in leisure and increasing

in consumption. After estimating the relevant parameters, these conditions can be verified empirically.

2.2 Marginal Rate of Substitution and Marshallian and Hicksian
Elasticities.

In a dynamic context, a Marshallian elasticity describes how hours of work within a period change

holding constant the full income available within the period (defined as the value of consumption plus

the value of leisure), whereas a Hicksian response conditions on utility within the period. As suggested

by Keane (2009), an alternative representation of the Hicks elasticity can be given considering a

tax change with a lump-sum transfer, keeping life-cycle wealth constant. 8 In such a situation, the

Marshallian elasticity would describe the change in labour supply if the tax change is not compensated.

Therefore, if one wants to think about the implications for labor supply of changes in taxes, the

Marshallian and Hicksian elasticities are the relevant concepts. Following the change in the structure

of wages (possibly induced by changes in taxes), resources may be reallocated over time through

changes to the time path of hours of work changing or through changes to the time path of the

marginal utility of wealth changing, or both. The Frisch elasticity captures the change over time in

hours worked in response to the anticipated evolution of wages, with the marginal utility of wealth

unchanged because the wage change conveys no new information.9This is then the right concept if

one wants to think about the implications of changes in wages over the business cycle.

Standard two-stage budgeting imply that we can first consider the problem of allocating resources

between consumption and female leasure within each period. If the optimum implies a strictly positive

number of hours, the first order condition for within period optimality implies that the ratio of the

marginal utility of leisure to that of consumption, that is the Marginal Rate of Substitution, equals

the after tax real wage. For our specification of preferences, for lt < H, this equation will be:

wt =
ult
uct

=
1− αt
αt

l−θt

c−φt
(11)

This equation is useful for computing static labour supply elasticities. Differentiating the MRS

equation (11) and the budget constraint with respect to wages we obtain an expression for Marshallian

elasticities for consumption and female leisure:

8This concept of a Hicks elasticity is used in Chetty (2012) and Keane and Rogerson (2011). It is equivalent to
the static concept under the assumption that resources are freely transferable between periods and preferences are
separable between consumption and leisure. Alternatively, it is equivalent if preferences are quasilinear, in which case
the Marshallian, Hicksian and Frisch elasticities coincide.

9When a wage changes stochastically, the response of hours worked will partly be due to the Frisch intertemporal
subsitution motive, but will also be affected by the change in the marginal utility of wealth due to the particular wage
realisation.
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εM =

[
∂ ln c
∂ lnw

∂ ln l
∂ lnw

]
=

[
1 wl

c

φ −θ

]−1 [ w(H−l)
c

1

]
By using the Slustky equation, we can obtain Hicksian elasticities by adding to the Marshallian

elasticities the expressions for the income elasticities

εHc = εMc +
∂ ln c

∂ ln(c+ wl)

wl

(c+ wl)

εHl = εMl −
∂ ln l

∂ ln(c+ wl)

w(H − l)
(c+ wl)

where the expressions for the income elasticities can be obtained by differentiating the MRS equa-

tion and the budget constraint with respect to income:

[ ∂ ln c
∂ ln y

∂ ln l
∂ ln y

]
=

[
φ −θ

1 wl
c

]−1 [
0

y
c

]
Several facts are worth noting. First, despite their simplicity, these equations result in non-linear

expressions for the elasticities that have the potential of varying greatly across consumers and do

not aggregate in a straightforward way. Second, for the specification we have used, the Marshallian

and Hicksian elasticities depend only on φ and θ (and on the values of earnings and consumption).

In particular, they do not depend on the inter-temporal parameters or on whether consumption and

leisure are separable in the utility function. Third, by log-linearizing equation (11), we can derive

an expression that can be used to estimate the parameters needed to identify the Marshallian and

Hicksian elasticities. Taking logs of the Marginal Rate of Substitution equation (11), and noticing

that log
(

1−αt

αt

)
= ψzt + χt, we obtain:

lnwt = ψzt − θ ln lt + φ ln ct + χt (12)

As we discuss below, the first stage of our estimation process estimates this equation to identify

the parameters that enter αt (that is the vector ψ), as well as φ and θ. This pins down the within

period elasticities. In addition, economic theory requires that Frisch intertemporal elasticities must

be at least as great as Hicks elasticities. Thus, our estimates of static elasticities provide a bound

on the intertemporal elasticity. This is particularly useful if there is limited data or complications in

estimating Frisch elasticities directly.10

2.3 Euler equations

Having considered the intratemporal margin conditional on participation (MRS), we now characterize

the intertemporal equilibrium conditions for the optimization problem in equations (1) and (2), which

10In the context of quasilinear utility as used by Chetty (2012), the Frisch elasticity collapses to equal the Hicks
elasticity (and the Marshallian) because there are no wealth effects on hours of work.
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are given by a set of Euler equations. While in principle we could consider either the Euler equation for

hours or that for consumption, only one is relevant, when coupled with the intratemporal condition.

To avoid considering interior points (and the selection problems they involve) at different points in

time, which would be relevant for the Euler equation for labour supply, we focus on the Euler equation

for consumption. Assuming that the household is not at a corner solution for savings, and so they are

not in a situation where they cannot consume as much as they would like today because of binding

borrowing restrictions, the following intertemporal condition will hold:

β(1 +Rt+1)uct+1
(.) = uct(.)εt+1 (13)

where E [εt+1| It] = 1

where It denotes the information available to the household at time t. The first line of (13) defines

εt+1, while the second line characterizes the optimality conditions. εt+1 represents the innovation to

the discounted marginal utility of consumption and will incorporate innovations about present and

future expected wages, male earnings and interest rates as well as the taste shifters zt+1, χt+1, ζt+1. We

assume that the marginal utility of consumption and the discount factor are always strictly positive,

and that the real interest rate Rt+1 is bounded away from -1, so that the support of εt+1 is <+ . We

can then take the log of equation (13). Taking the log of the marginal utility of consumption (and

adding the superscript h to the relevant variables to denote household we have:

lnucht = −γ lnMh
t + lnαht − φ ln cht + ϕPht + πzht + ζht

Log-linearizing the Euler equation and rearranging we therefore get:

ηht+1 = κht + lnβ + ln(1 +Rt+1)− φ∆ ln cht+1 + ∆ lnαht+1

−γ∆ ln(Mh
t+1) + ϕ∆Pht+1 + π∆zht+1 (14)

where ηht+1 ≡ ln εht+1−E
[
ln εht+1

∣∣Iht ]+ ∆ζht+1 and κht ≡ E
[
ln εht+1

∣∣Iht ] . This error term combines

the expectation error and the taste shifters that are unobserved to the econometrician. Notice that

E
[
ηht+1

∣∣Iht ] = 0 by construction. We discuss the identification and estimation of the parameters of

this equation in section 3.2 below. Frisch elasticities on the intensive margin can be calculated directly

from the Euler equations and are given by the following expressions (the derivation is in Appendix

C):

11



εFc =
−ucuclwt

ct(ullucc − u2cl)
=

wtγαtc
−φ
t lt{

γφ(1− αt)l1−θt + θγαtc
1−φ
t +Mtφθ

} (15)

εFl =
uccucwt

lt(ullucc − u2cl)
=

−
(
γαtc

1−φ
t +Mtφ

)
{
γφ(1− αt)l1−θt + θγαtc

1−φ
t +Mtφθ

} (16)

2.4 Returns to Experience

In our baseline specification and in the estimation of the parameters identified by the Euler equation

and by the Marginal Rate of Substitution, we neglect returns to tenure and experience and assume

that female wages are given by an exogenous process, as specified in equations (6), (7) and (8). If,

instead, the evolution of human capital, and therefore wages, is not exogenous as in (6) but depends

on past labour supply histories, rational individuals will take this into account when making their

current labour supply choices. This issue has been argued to be important, for instance by Imai and

Keane (2004).

If returns to experience operate only through the participation decision, rather than hours, then

the use of the first order condition for hours of work (which conditions on participation) and the Euler

equation for consumption (which also conditions on optimal participation) is still valid. Therefore,

under this assumption, the estimation strategy that we discuss below will be valid, regardless of

whether returns to experience are operational or not. If, however, the returns to experience depend

on hours of work, rather than (or in addition to) the participation decision, then the MRS conditions

will no longer be valid, as individuals will choose hours taking into account not only the current wage,

but also the effect that current hours have on future wages. The Euler equation analysis will not be

affected, except by the fact that some of the quantities we use come from the estimates of the MRS.

In section 7, we explore the possible role of the returns to experience, but only when these operate

through the extensive margin. This implies that we will not need to change our empirical strategy for

the analysis of the MRS and of the Euler equation. However, we will need to change our analysis of

the extensive margin to take the possibility of returns to experience into consideration.

3 Empirical Strategy

Given the model we have sketched in the previous section, we use US household level data on consump-

tion, labour supply, earnings and wages (as well as a variety of demographic variables) to estimate

the model parameters. We use a variety of methods and exploit different restrictions imposed by

the model on different sets of moments to estimate different sets of parameters. In this section, we

discuss our empirical approach and the identification assumptions we make. We divide our discussion
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into three sections, corresponding to the three sets of equilibrium conditions that we use to identify

different parts of the model.

We start with a discussion of the Marginal Rate of Substitution conditions and of what parameters

they can identify. We then move on to discuss intertemporal conditions and their use to estimate the

parameters that determine the intertemporal elasticity of substitution. For these two steps, it is

not necessary to solve the model explicitly and derive policy functions that determine consumption

and leisure choices as a function of state variables. Instead, we use equilibrium conditions and some

assumptions about the nature of the random variables that enter the problem (that can be either

representing uncertainty faced by individuals or unobserved (by the econometrician) components of

preferences.

As we discuss below, however, these conditions are not sufficient to identify all components of

preferences or to characterise fully the decision rules implied by our model. To complete our exercise,

therefore, we need to solve the full model. By matching certain moments of the data with the

corresponding theoretical moments, we identify the parameters that could not be identified by the

MRS and the Euler Equation. With the complete set of parameters we can then characterise the

properties of the decision rules for all endogenous variables, including participation and hours of

work.

3.1 Intratemporal margins

As mentioned in Section 2.2, standard two-stage budgeting considerations imply that, for households

not at a corner, that is where the wife works, the relevant intra-temporal equilibrium condition is given

by equation (12). Notice the importance of the unobserved heterogeneity term χt in that equation: in

its absence we would have an equation with perfect fit that would obviously be rejected by the data

and would imply the ad-hoc consideration of measurement error in the relevant variables.

The econometric estimation of the MRS equation poses two problems. First, the subset of house-

holds for whom the wife works and the MRS condition holds as an equality is not a random subset.

This would therefore imply that the unobserved heterogeneity term χt would not average out to zero

and would be correlated with the variables that enter equation (12). Second, even in the absence

of participation issues and corner solutions, it is likely that individual wages (and consumption and

leisure) will be correlated with the unobserved heterogeneity term, so that the use of OLS to estimate

such an equation would result in biased estimates of the structural parameters φ and θ. We discuss

these two issues in turn.

For participation, we use a two step procedure. We specify first a reduced form equation for the

extensive margin. Having estimated such a participation equation, we use an Heckman (1979)-type

selection correction approach to estimate the MRS equation (12) only on the households where the wife
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works and augmenting it with a polynomial in the estimated residuals of the participation equation.

Non-parametric identification requires that some variables that enter the participation equation do

not enter the specification for the MRS: consistently with the model we assume that these variables

are given by male earnings and male employment status.

Whilst the participation equation is consistent with our structural dynamic model, in that we

model participation as a function of the state variables of the dynamic problem in equation (1), we do

not solve it explicitly at this stage. Beside its simplicity, this approach has the advantage of delivering

consistent estimates of the parameters of the MRS equation even when some of the details of our

model are mis-specified, such as the specification of the innovation process.

The second issue in the estimation of equation (12) is that our measures of wages, which is obtained

by dividing earnings by hours, might be correlated with the residual term χt. This could be due either

to measurement error in hours or earnings or to the possible correlation between taste and productivity

heterogeneity. To avoid these problems, we use an instrumental variable approach and exploit only

part of the observed variability in wages to identify the parameters of interest. In particular, we use

as instruments fully interacted regional, time and education groups dummies. This is equivalent to

taking averages within cells defined by time periods (in quarters), region and education groups and

so we exploit only the variability across these groups, rather than the individual variability. While

this does mean that we use the differences between wages at different levels of education, the vector

of taste shifter variables z includes education dummies, which effectively absorbs average differences

in the wages of individuals with different levels of education, differences in their taste for work and

taste consumption. Within each education group, the variability that we exploit is that over time and

across regions.

Finally, notice that if γ = 0, then the utility function collapses to the additively separable form

and the elasticity of intertemporal substitution of consumption would equal φ and could be estimated

from the within period MRS condition alone. However, it should be stressed that we cannot test

non-separability from the within period MRS alone.

3.2 Euler Equation Estimation

A natural approach to the estimation of the Euler equation (13) is GMM. However, given the nature

of the data we have, all that is possible to bring to data is its log-linearized version, as in equation

(14). Moreover, as discussed in Attanasio and Low (2004), the small sample properties of non linear

GMM estimators can be poor when applied to Euler equations similar to that we are studying. We

therefore focus on the estimation of equation (14).

The identification and estimation of the parameter of this equation depends, obviously, on the

nature of the ‘residual’ term ηht+1 on its right-hand-side. As noted above, ηht+1 contains expectations
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errors (εht+1) and taste shifters unobservable to the econometrician (ζht+1). As for the former, the

rational expectations assumption that is typically invoked, implies that any variable known to the

household at time t is a valid instrument. On the other hand, to achieve consistency using such an

argument, it will be necessary to exploit explicitly the time series variation and, therefore, as discussed

in Attanasio and Low (2004), a long time series is required to achieve consistency.11

If we can use a sample that covers a large number of time periods, we then need to assume that

the lagged variables that are used as instruments are uncorrelated with the innovations to the taste

shifters ∆ζht+1.. This is trivially true if individual taste shifters are constant over time or if they are

random walks. In what follows we will be making this assumption, which can be in part be tested by

considering over-identifying restriction tests.

The nature of the data we use, the Consumer Expenditure Survey (CEX), which we describe in

Section 4, poses some additional challenges to the identification and estimation of equation (14). In

particular, although the CEX covers now a substantial time period (from 1980 to 2010) over which we

can consider quarterly data, as in many other household surveys, each household is only observed for a

few time periods (in our case 4 quarters). Therefore, it is not possible to observe the same households

over an extended time period.

For this reason, we follow a well-established tradition in the literature on the estimation of life

cycle models of consumption and labour supply and use a synthetic cohort approach (see Browning,

Deaton and Irish, 1985; Attanasio and Weber, 1993, 1995; Browning, Blundell and Meghir, 1994). An

equation such as (14) can be aggregated over certain groups and we follow the average behaviour of

the variables of interest (or their non-linear transformation) for a group of households with constant

membership. A time series of cross sections can be used to construct consistent estimates of these

aggregates and, in this fashion, use a long time period to estimate the parameters of the Euler equation

and test its validity.

We define groups by year of birth. The assumption of constant membership of these groups might

be questioned at the beginning and at the end of the life cycle for a variety of reasons, including

differential rates of family formation, differential mortality and so on. To avoid these and other issues,

we limit our sample to households whose husband is aged between 25 and 67 and where wives are

aged between 25 and 60.12

Having indentified groups and denoting them with the superscript g, we define as Xg
t the (popu-

lation) average for group g of the variable Xh
t . We then aggregate equation (14) across households

11The reason for the need of a long time series is that, even under rational expectations, expectations errors do not
necessarily average out to zero (or are uncorrelated with available information) in the cross section, but only in the time
series: expectation errors may be correlated with available information in the cross section in the presence of aggregate
shocks. See the discussion in Hayashi (1987), Miller and Sieg (1997), Attanasio (1999), or Attanasio and Weber (2010).

12If credit constraints are binding, the Euler equation will not be holding as an equality. Very young consumers are
excluded because they are more likely to be affected by this issue. For older consumers, in addition to changes in labour
force participation and family composition, health status also changes in complex ways that maybe difficult to capture
with the taste shifters that we have been considering.
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belonging to group g to get:

ηgt+1 = κgt + lnβ + ln(1 +Rt+1)− φ∆ ln cgt+1 + (17)

∆ lnαgt+1 − γ∆ ln(Mg
t+1) + ϕ∆P gt+1 + π∆zgt+1

For this approach to work, however, it is necessary that the relationship one studies is linear in

parameters. If Mh
t and αht were observable, this would be the case for equation (17). However, both

Mh
t and αht are non linear functions of data and unobserved parameters, so that, in principle they

cannot not be aggregated within groups to obtain Mg
t and αgt .

A solution to this problem uses the fact that the parameters that determine Mh
t and αht can be

consistently estimated, as discussed in Section 3.1, using the MRS conditions. Given these consistent

estimates of the parameters that enter Mh
t and αht , one can construct consistent estimates of these

variables and, effectively, treat them as data. This is the procedure we use in what follows.

Finally, we need to consider the fact that the quantities that enter equation (17) are population

means of the relevant variables and, as such, are not directly observable. However, we can obtain

consistent estimates of these quantities from the time series of cross section that we have. We can

therefore substitute these observable quantities and obtain:

η̃gt+1 = κ+ lnβ + ln(1 +Rt+1)− φ∆ln cgt+1 + (18)

∆ln α̂gt+1 − γ∆ ln(M̂g
t+1) + ϕ∆P gt+1 + π∆zgt+1

The residual term η̃gt+1 now includes, in addition to the average of the expectation errors and of

the changes in taste shifters, several other terms. In particular, it includes: (i) a linear combination

of the difference between the population and sample averages at time t and t+ 1 for all the relevant

variables (induced by the fact that we are considering sample means rather than population means

for group g); (ii) the difference between the (consistently) estimated Mg
t and αgt and their actual

value (induced by estimation error in the parameters of the MRS); (iii) the difference between the

innovation over time to the average value of κgt , which we have denoted with the constant κ.

All the variables on the right hand side of equation (18) are observable. We can therefore use

this equation to estimate the parameters of interest. However, care has to be taken to choose the

instruments so that they are plausibly uncorrelated with η̃gt+1.13

13As noted by Deaton (1985) and discussed extensively in the context of the CEX by Attanasio and Weber (1995), the
use of sample rather than population averages for all the ‘group’ variables induces an MA(1) in the residuals, induced by
the sampling variation in the rotating panel structure. We need to assume that the instruments are not correlated with
the (average) estimation error of the Mh′

t s and αh
t or with the innovations to the higher moments of the expectation

errors (κgt − κ). This last assumption is discussed in Attanasio and Low (2004). In the Appendix, we discuss some of
the sample selection choices to avoid some of the problems caused by the CEX.

16



While the assumptions we make guarantee that the appropriate choice of instruments yield consis-

tent estimates, the covariance structure of the η̃gt+1 is quite complex. The contemporaneous covariance

of η̃git+1 and η̃
gj
t+1 is not, in general zero, as aggregate shocks will have effects that correlate across the

various groups. We should take this structure into account when computing the variance covariance

matrix of the estimates, if not to improve their efficiency. Whilst it is in principle possible, given our

assumptions, to construct an estimate of the variance covariaince of η̃gt+1 from the estimated param-

eters, in practice this turns out to be cumbersome, as there is no guarantee that, in small sample,

these estimates are positive definite. Given these difficulties, we decided to follow a different and, as

far as we know, novel approach based on bootstrapping our sample, with a structure consistent with

the basic assumption of our model. We describe the bootstrapping procedure in detail in Appendix

B.

3.3 Extensive margins

One of the main goals of this paper is to characterise the labour supply reaction to wage shocks

at the extensive as well as the intensive margin. And one could argue that the extensive margin is

particularly important, as in the presence of fixed costs of participation and other non-convexities, it

might generate a considerable amount of action and, therefore, be particularly salient for evaluating

the size of ‘aggregate’ labour supply elasticities (as argued by Rogerson and Keane (2012) among

others).

However, when considering the extensive margin, it will be necessary to solve explicitly the dynamic

problem we have been considering. This involves specifying completely the economic environment the

individual households live in, including both present and future conditions (at least as perceived by

the household). Moreover, often it will be impossible to obtain a closed form solution for the policy

rules or general results for the elasticities of interest. It will therefore be necessary to solve the model

numerically and estimate or calibrate its parameters using the properties of the solutions so obtained.

In what follows, we use a number of life cycle facts and match similar moments computed by

simulating our model to obtain the missing parameters of the model. Not all the parameters of the

model will be calibrated, however. First, we will use the estimates of the other parameters that

we obtained from the MRS and the Euler Equation. Second, some parameters will be taken from

other sources: either the literature or auxiliary regressions. Armed with these parameters we will be

simulating the model we have constructed for a large number of individuals to study the properties

of individual and ‘aggregate’ labour supply.

To obtain the calibrated parameters of our model, we target the labour supply behaviour of women

born in the 1950s. We assume one model period is one quarter. We assume individuals leave for 50

years, the last 10 in retirement. We assume 15% of women are childless (see OECD Family Database).
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We assume there are two different groups of mothers, young mothers who have their first child at the

age of 23 and old mothers who have their first child at the age of 28. In order to target the US average

age at first child arrival of 25, we assume there are 60% of mothers in the first group and 40% in the

second. Second child arrives 2 years after the first. We describe in detail the moments we target and

the results we get in our result section.

Goodness of fit Having obtained all our estimates, we simulate the model and check whether it

is able to fit several features of the data, over and above those that have been used to derive the

parameter estimates (either by econometric methods or by calibration). In particular we explore:

participation and hours life-cycle profiles, participation rates conditioning on several characteristics

such as motherhood and the distribution of hours worked.

4 Data and Descriptive Statistics

We use data from the Consumer Expenditure Survey (CEX) for the years 1980-2003.14 The CEX

includes detailed recall questions on household expenditures as well as some information on the assets,

demographics, incomes and labour supply of household members. Households can be followed for up

to four quarters.

Our definition of consumption covers nondurable goods excluding medical and education spending.

While we are able to tell whether an individual earns an income in the current quarter or not, labour

supply and income questions in the CEX typically cover the previous 12 months. To obtain quarterly

hours worked we therefore divide by four the product of average hours worked per week when working

over the past year and the number of weeks worked over the past year. Hours of leisure are then given

by 1250 minus quarterly hours. Net wages are calculated by dividing annual salary income by annual

hours (and dividing by four), and then subtracting marginal federal income tax rates generated using

the NBER TAXSIM model (Feenberg and Coutts, 1993).15 We deflate all expenditures, wages and

incomes using the Consumer Price Index for the appropriate period.

Our sample consists of couples where the female is aged between 25 and 60 and males are aged

between 25 and 67. Labour supply and income data are only collected in the first and final interviews

of the CEX unless a member of the household changes their employment status. We therefore restrict

our sample to households interviewed in the first interview for our estimation. We use information

from these households’ fifth interviews to calculate growth rates and transitions for our calibration.

We drop those in rural areas and those in the top and bottom 2.5% of the distribution of hours

14We stop at 2003, as income imputation was introduced to the data from 2004 onwards (and the original non-imputed
variables were only reintroduced in 2006).

15We are grateful to Lorenz Kueng for making his mapping of the CEX to TAXSIM publically available.
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Table 1: Descriptive statistics

Mean Standard Mean Standard
Deviation Deviation

Consumption 8510 3662.15 Husband’s age 42.6 10.52
% Wives employed 0.69 0.46 Wife’s net wage 15.6 7.12
% Husbands employed 0.90 0.30 Husband’s net wage 20.6 8.63
Wife’s hours 432 152.05 Number of children 1.1 1.22
Husband’s hours 546 131.13 Number of adults 2.4 0.87
Wife’s age 40.2 9.75

Note: Monetary values expressed in 2011 $

(conditional on participation) or consumption. We also drop the top 2.5% of wages and those who

are seen to earn less than 3 quarters of the national minimum wage in any given year. This leaves us

with a sample of just over 27,500 households. Interest rates are for 3 month Treasury Bills and are

taken from the Federal Reserve Bank of St Louis. Table 1 presents some summary statistics including

on hours, consumption and wages in our data.

5 Parameter Estimation and Calibration.

In this section, we report the estimates we obtain using the econometric techniques discussed in Section

3. In the first two sub-sections we report the estimation results obtained used the MRS conditions

and the Euler equation, respectively, while in the third, we discuss our calibration results. In the last

subsection, we show how well the model matches additional statistics.

5.1 MRS estimates

In Table 2, we report the estimates of key parameters for the MRS equation:16

lnwt = ψzt − θ ln lt + φ ln ct + υt

We estimate a value of φ of 0.43 and of θ of 0.87. Both are less than one and so satisfy the concavity

requirements of the utility function. A standard CES specification imposes φ = θ, which is rejected

by our estimates. A Cobb-Douglas specification imposes that φ = θ = 1 which is also rejected.

Table 2 also shows the coefficients attached to variables included in zt, reflecting the impact of

some demographic variables on the MRS. We report the coefficient on the number of children of

various ages and on family size. A positive coefficient on one of these variables implies that women

will supply less hours of work in the market, for a given level of consumption and wages, when this

16The results for the probit model for participation are reported in Appendix A.
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Table 2: Estimation of MRS equation

Parameter Estimate (Standard Error)

θ 0.87*** (0.120)
φ 0.43*** (0.035)

Ψ
ln(famsize) -0.234*** (0.018)
kids 0-2 0.138*** (0.014)
kids 3-15 0.023** (0.007)
kids 16-17 -0.001 (0.010)

e1 0.077 (0.049)
e2 0.0934* (0.044)
e3 0.0357 (0.029)

Note: N = 17,852, standard errors in parentheses

*p<0.05, ** p<0.01, *** p<0.001

Additional controls for elderly person in the household,
a cubic in age, race, education, region and season

variable increases.17 The coefficient on young children aged 0-2 is positive and highly significant. The

variable measuring children aged 3-15 also attracts a positive (albeit smaller) coefficient, while the

coefficient for older children is not statistically different from zero. The log of family size attracts a

negative and significant coefficient.

Finally, Table 2 reports the coefficients on the estimates of the first three moments of the residuals

conditional on positive participation, calculated using the estimates of the probit for participation.

These coefficients are jointly significant (p-value = 0.037), indicating that it is important to take into

account selection in obtaining the estimates of the MRS coefficients.

5.2 Euler Equation estimates

As discussed above, we use the parameters obtained from estimating the MRS condition to calculate

cohort average values of the logs of Mt and αt for different time periods, and this gives the variables

we need to estimate our Euler equation. We calculate α for each individual by evaluating 1/(1 +

exp(ψzzi,t + χi)), where χi is the residual from the MRS equation.18

17A positive coefficient means that the marginal utility of leisure must be lower, and this in turn means hours of
leisure must be higher.

18This must also be calculated for non-participants for whom we do not have estimates of the MRS residuals. we do
this by imputing wages to those out of work using a regression of wages on family characteristics and region dummies,
calculating a lower bound on what this would imply for their residuals given our MRS coefficients and their non-
participation, and then adjusting these residuals such that for all participants and non-participants E[vi] = 0. Once we
have obtained αi the calculation of Mi is straightforward.
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Table 3 shows results we obtain from estimating the Euler equation (18). We estimate γ at 2.64,

a value that given the precision of our estimates, is significantly different from zero, implying that

preferences are non-separable and that consumption and leisure are substitutes.19 The coefficients

on the control variables included in the vector zt are imprecisely estimated and are not significantly

different from zero. In what follows, we impose that the parameter ξ and the coefficient on having

children aged 16-17 are both zero. A Hansen J test of overidentifying restrictions (Hansen, 1982) fails

to reject the null hypothesis at the 5% significance level with a p-value of 0.083.

Table 3: Estimation of Euler equation

Parameter Estimate Standard Error [95% Confidence Interval]

γ 2.638** 0.774 [1.505, 4.671]
κ̄+ ln(β) -0.038 0.504 [-1.506, 0.635]

π
ln(famsize) -0.004 0.681 [-1.813, 0.740]

kids 0-2 0.353 0.340 [-0.396, 0.988]

kids 3-15 -0.175 0.246 [-0.208, 0.770]

Hansen J-statistic P value = 0.083

N = 835, standard errors in parentheses, *p<0.05, ** p<0.01, *** p<0.001

Note: Additional controls for season dummies. Instruments are second, third and

fourth lags of the logs of consumption and Mt, and first, second, third and fourth

lags of the logs of the interest rate, leisure, and αt

5.3 Calibration of the remaining parameters.

As discussed in Section 3.3, to estimate the responsiveness on the extensive margin, we need to specify

all the details of the model and quantify each element of the model. This need to specify the full

model in order to identify the extensive margin is in contrast to the lower informational requirement

needed to identify intensive parameters. There are three sets of parameters in the calibration: those

estimated via the MRS conditions and the Euler equation, those coming from external sources and

those that we calibrate using the full model.

External Parameters. Table 4 reports the estimated and external parameters used in the

19A value of 0 for γ would imply additive separability in preferences over consumption and leisure. For cases when θ,
φ > 0 (as we have here), a value of γ less than zero would imply that leisure and consumption are complements, and a
value of γ greater than zero would imply that consumption and leisure are substitutes.
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calibration. The first panel reports the estimated parameters from Tables 2 and 3 above. The second

panel reports parameters which come from external sources.

Table 4: External Parameters

Esimated Parameters (from first-order conditions)

Curvature on leisure θ 0.87
Curvature on consumption φ 0.43
Curvature on utility γ 2.64

Exogenous Parameters

Discount Factor (annual) β 0.98
Interest Rate (annual) R 1.015
Regression Log Wage on Age and Age2 (Men) αm1 , α

m
2 0.05991, -0.00064

Husband and Wife Wage Correlation ρ 0.25
Standard Deviation of Permanent Shock (Men) σξm 0.077
Standard Deviation of Permanent Shock (Women) σξf 0.063
Standard Deviation of Initial Wage (Men) σξm,0 0.447
Standard Deviation of Initial Wage (Women) σξm,0 0.387
Length of Life (in years) T 50
Length of Working Life (in years) r 40

We fix the annual interest rate to equal the average real return on three monthly T-bill at 0.015,

and set an annual discount factor equal to 0.98. This implies a discount rate slightly higher than

the interest rate. The deterministic component of the male earnings process is estimated from the

CEX: we take the two parameters of a regression of husband log earnings on age and age squared.

Both the innovations to male earnings and those to female wages are assumed to have a unit root,

consistent with the evidence on men produced by MaCurdy (1983) and Abowd and Card (1989). The

standard deviation of the innovation for husband’s earnings is assumed to be 0.077, consistent with

Hugget, Ventura and Yaron (2011) and Meghir and Pistaferri (2004). Furthermore, we assume an

initial standard deviation of husband earnings of 0.447 as measured in the CEX. There is limited

evidence on the variability of female wages and/or earnings. In contrast with men, this statistic

is highly affected by non-random self-selection into the labour market. We set the initial standard

deviation of wages from the CEX equal to 0.387. We set the standard deviation of female wages

innovations to 0.063, which is consistent with the increase in the variance of wages over the life-cycle

for women born in the 1950s. We assume that the correlation coefficient between the two shocks (for

husband and wife) is equal to 0.25 as estimated by Hyslop (2001).

As in Attanasio et al. (2008), there are two components to child care costs: the function G(at) and
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the price p. We estimate the function G(at) directly from data. In particular, for households where

the mother is working, we regress total childcare expenditure on the age of the youngest child, the

age of the oldest child, the number of children and a dummy that equals one if the youngest child is

0. The shape G(at) can be derived from the coefficients of this regression function, considering that

in our model all women with children have two of them and at the same interval between children

of two years.20 This implies that the child care cost can be expressed as a function of the age of the

oldest child. Finally, we assume that the household receives a pension equal to 70% of the husband’s

earnings in the final working period.

Table 5: Baseline economy: Calibrated Parameters and Targets

Parameters Value

Childcare Cost p 51
Fixed Cost of Working F̄ 17

Offered Wage Gender Gap yf0 /y
m
0 0.72

Constant term weight of consumption ψ0 2.91
Exogenous wage growth α1 0.052
Exogenous wage growth α2 -0.0004

Targets Data Model

Participation Rate 0.714 0.704
Participation Rate of Mothers 0.550 0.549
Observed Wage Gender Gap 0.770 0.757
Wage Growth (if younger than 40) 0.0192 0.0203
Wage Growth (if older than 40) 0.0142 0.0107
Hours worked 432 436

Statistics for individuals aged 25 to 52. Wage growth is over 3 quarters.

Calibrated parameters. There are six parameters that we calibrate within our decision model

and that relate to the participation decision: the fixed cost of working, F̄ ; the price of child care,

p; the offered wage gender gap, yf0 /y
m
0 ; two parameters that determine exogenous wage growth; and

the ‘constant term’ of the α(.) function in the CES utility which determines, together with a set of

demographics, the weight of consumption in the utility function, parameter ψ0. In order to identify

these parameters we target statistics from the cohort born in the 1950s: the female participation rate,

the participation rate of mothers, average hours worked, the observed wage gender gap, and observed

20Our estimate of G (at) combines the cost of the first born child along with any subsequent costs associated with
additional children who are born later. In this way, any economies of scale in child costs will be captured by G (at), but
we do not identify separately the marginal cost of extra children.
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wage growth at two different stages of the life-cycle.

In Table 5, we report the value of the parameters we obtain in this calibration exercise as well as

the value of the targeted moments in the data and in the simulated data. Both the monetary fixed

cost of working and the monetary fixed childcare cost are small compared to household earnings.

5.4 Goodness of fit

Our next step is to show to what extent the model can account for observed female labor supply

behaviour that was not targeted in the calibration. The calibration was focused on averages taken

over the life-cycle. Our focus here is on life-cycle paths. Figure 1 shows life-cycle profiles in the

simulations and in the data and Table 6 reports additional moments showing the heterogeneity and

distribution of behaviour.

Figure 1: Life-Cycle Profiles: Baseline Model (solid black line) versus Data (dashed red line)
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The life-cycle path of female labor supply both at the extensive and intensive margin is similar in

the model and in the data, except at the early part of the life-cycle when the model underestimates

hours and participation. This underestimation is driven by women without children who work more

in the data than in the simulations. Observed female wages and the variance of wages are increasing

with age in our simulations, consistent with what we observe in the data. The evolution of the wage

gender gap over the life-cycle is not reported but is stable over the life-cycle in both the simulations

and the data. The profiles shown are shaped not only by our assumptions on the wage process, but

24



also by the selection of women into the labor market.

The distribution of hours worked is close to the data, except that the model implies higher hours

worked for those women at the 90th percentile of the hours distribution. Furthermore, the fraction of

women working 520 hours (an average of 40 hours a week) is higher in the data. The distribution of

observed wages in the simulations is similar in the model and in the data.

Table 6: Statistics on Hetereogeneity

Data Model

Participation Rate Young Mothers 0.487 0.526
Participation Rate Old Mothers 0.618 0.559
Participation Rate Mothers with Children Aged 3-18 0.714 0.726
Participation Rate Childless Women 0.840 0.710

Average Hours Worked 10th Percentile 189 168
Average Hours Worked 25th Percentile 330 281
Average Hours Worked 50th Percentile 520 441
Average Hours Worked 75th Percentile 520 593
Average Hours Worked 90th Percentile 585 713

Median Duration of Spells (years) 1.8

Wage 10th Percentile 7.96 8.97
Wage 50th Percentile 14.18 14.73
Wage 90th Percentile 25.42 27.24

Finally, we perform two additional exercises to compare the correlations in the data to those

observed in the data. First, we use a simulated sample to reestimate the MRS equation, employing

the same procedure used in getting our estimates from the data and described in section 2.2. Second,

we estimate a probit model for female labour force participation as a function of husband earnings

and demographics, both on simulated and actual data

The estimates of the MRS parameters θ and φ that we obtained from actual data (and that were

used to generate the simulated data) are almost identical to those we recover from the simulated data.

Given the complexity of the model that includes discrete choices over the life cycle, it is an important

validation of our strategy that we are able to recover the MRS parameters from the simulated data.

In Table 7, we report the marginal effects of the probit model for participation decision obtained

from actual data and simulated data. Although the correlation between wife’s employment and

husband earnings is higher in the model (the marginal effect being -0.14) than in the data (the

marginal effect being -0.06), it should be noted that our specification of preferences helps to produce

a much closer correlation to the data than the one implied by standard preferences, such as those in
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Attanasio, Low and Sánchez-Marcos (2008).21

Table 7: Probit of the Employment Decision

Data Model

ln(husband earnings) −0.0591
(0.0085)

−0.1442
(0.0017)

kids 0-2 −0.2006
(0.0102)

−0.1397
(0.0022)

kids 3-15 −0.0868
(0.0046)

0.0065
(0.0011)

kids 15-17 0.0032
(0.0157)

0.0919
(0.0028)

Coefficients are marginal effects. Standard errors in brackets.

6 Labour Supply Elasticities

In this section, we use the estimates of the model to discuss implications for various wage elasticities.

We start our discussion with the Marshallian and Hicksian elasticities that can be obtained from

the MRS parameters. We then move on to the Frisch elasticities at the intensive margin. We then

simulate the model to obtain elasticities at the extensive margin. In the final subsection, we look at

aggregation issues and discuss what are the implications of our estimates for aggregate labour supply

elasticities.

6.1 Marshallian and Hicksian Hours Elasticities

The first two panels in Tables 8 and 9 show how the MRS parameters translate into within-period

Marshallian and Hicksian wage elasticities for hours of work, for lesiure and for consumption. These

elasticities vary according to family characteristics and the levels of consumption and leisure. Table 8

reports elasticities at different percentiles of the distribution of Marshallian elasticities to highlight the

heteroegeneity in the elasticities, while Table 9 shows them at different percentiles of the distribution

of consumption to indicate how elasticities differ for households with different levels of welfare.

The median Marshallian hours elasticity is 0.70. As theory predicts, Hicksian elasticities are always

greater than Marshallian elasticities: for the household with the median Marshallian elasticity, the

Hicksian hours elasticity is around 50% larger at 1.08. We also notice that Marshallian elasticities are

positive across the distribution, implying an upwardly sloping labour supply function with no evidence

of a backward-bending supply curve.

21If we add as an additional regressor lagged employment (3 quarters) the marginal effect of husband earnings decreases
both in the simulated sample (to -0.05) and in the data sample (to -0.02).
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These estimates of the elasticities, and especially the Hicksian elasticities, are larger than found

elsewhere in the literature. There are several reasons for this finding: first, the specific functional

form for the utility function which allows for nonseparabilities between consumption and hours of

work; second, the specific variability which is used to identify the parameters of the Marginal Rate

of Substitution; and third, the explicit use of consumption data in estimating the elasticities through

the Marginal Rates of Substitution. All these features of our exercise result in relatively large elas-

ticities, which is similar to that found by Ziliak and Kniesner (2005). More recently, Blundell et al.

(2015) also report elasticities that are similar in size to what we obtain.22 The importance of using

consumption data is that this imposes consistency in the data such that as wages change, either hours

of work change, consumption changes or savings change. Estimation strategies that do not impose

this consistency can result in estimates of the elasticity of hours of work which are very low because

the implied adjustment of consumption is unconstrained by the data.

There is a large variation in elasticities in the cross section. The interquartile range of the Mar-

shallian hour elasticity is 0.66 (from 0.45 to 1.11) and Hicksian elasticities increase with Marshallian

elasticities. Finally we notice a considerable amount of heterogeneity in the size of elasticities as the

level of non durable consumption varies. Those with the highest levels of consumption make labour

supply decisions that are the most responsive to wage changes, and make consumption decisions that

are the least responsive to wage changes.

Table 8: Wage Elasticities at Percentiles of Marshallian distribution

Marshallian Hicksian Frisch
Percentiles: 25th 50th 75th 25th 50th 75th 25th 50th 75th

Hours Worked 0.45
(0.113)

0.70
(0.158)

1.11
(0.274)

0.90
(0.143)

1.08
(0.194)

1.34
(0.313)

1.22
(0.136)

1.35
(0.171)

1.50
(0.245)

Leisure −0.58
(0.143)

−0.44
(0.102)

−0.30
(0.0660)

−0.83
(0.178)

−0.71
(0.128)

−0.55
(0.0775)

−0.95
(0.144)

−0.90
(0.113)

−0.84
(0.083)

Consumption 1.14
(0.112)

1.42
(0.125)

1.70
(0.145)

1.64
(0.0913)

1.96
(0.107)

2.19
(0.138)

0.40
(0.124)

0.51
(0.158)

0.63
(0.21)

Note: Standard errors calculated for indivduals at quantiles (as opposed to quantiles themselves)

6.2 Frisch hours elasticity

We use the estimates we obtain from the the Euler equation reported in Section 5.2 to estimate the

Frisch elasticities with respect to wages (at the intensive margin). Notice that these elasticities can

22For female, using PSID data and a completely different approach from ours, they report a Marshallian elasticity of
0.64 and a Frisch elasticity of 1.43

27



Table 9: Wage Elasticities at Percentiles of Consumption distribution

Marshallian Hicksian Frisch
Percentiles: 25th 50th 75th 25th 50th 75th 25th 50th 75th

Hours Worked 0.70
(0.159)

0.66
(0.147)

1.22
(0.291)

1.05
(0.197)

1.07
(0.181)

1.47
(0.331)

1.28
(0.169)

1.40
(0.165)

1.66
(0.263)

Leisure −0.50
(0.113)

−0.42
(0.093)

−0.71
(0.169)

−0.75
(0.140)

−0.68
(0.115)

−0.86
(0.193)

−0.91
(0.121)

−0.88
(0.105)

−0.97
(0.153)

Consumption 1.32
(0.123)

1.47
(0.130)

0.89
(0.117)

1.82
(0.104)

1.99
(0.114)

1.19
(0.102)

0.48
(0.144)

0.54
(0.164)

0.37
(0.110)

Note: Standard errors calculated for indivduals at quantiles (as opposed to quantiles

themselves)

be obtained directly from the Euler equation using equations (15) and (16). These are shown in the

right hand panels in Tables 8 and 9. Table 8 reports estimates of the Frisch elasticities with respect

to the wage rate for hours of work, leisure and consumption at different points in the distribution

of the Marshallian elasticity, and Table 9 reports estimates at different points in the distribution of

consumption.

The Frisch elasticity for hours of work is larger than the Hicksian elasticity, as theory would predict.

The elasticitiy varies with the Marshallian elasticity and it is larger for those with higher values of

consumption, rising from 1.28 at the 25th consumption percentile to 1.66 at the 75th percentile. These

estimates of the elasticities are larger than those found elsewhere in the literature.

For consumption, the elasticity of consumption with respect to wages varies in a non-monotonic

fashion along the distribution of consumption, being smaller at the 25th and 75th percentile than at

the median. At the median consumption level it takes the value of 0.54.

Part of the heterogeneity we observe in the Frisch elasticities is due to differences across the life-

cycle, but much of the heterogeneity is due to differences in the level of hours of work. The most

responsive individuals are those who are working relatively few hours. This greater responsiveness is

observed for young and older women who are working few hours.

6.3 The Extensive Margin and Aggregate Elasticities

The focus of the previous two subsections was on how responsive individuals’ decsions over hours

worked are to wage changes. This subsection reports on how responsive individuals’ decisions about

whether or not to participate are to wage changes. We approach this question by asking how much

the percentage of women who work changes as the wage changes. We then combine this extensive

measure with the intensive measure to show how total labour supply (ie. total hours worked) changes
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as the wage changes. This is what we call the “macro elasticity”.

Table 10 summarises these responses for women of different ages. Each of the three columns in the

table corresponds to the elasticities at a different age (26,36 and 46). The first row in the Table refers

to the ‘extensive margin’ elasticity and represents the percentage of women who are shifted from non

working to working as a consequence of an anticipated 5% increase in real wages that persists for 1

year. Rows 2 to 4 report the hours (intensive margin) elasticity for the same change in wages, with

the different rows showing the distribution of the elasticity. Finally, in the last row, we aggregate

explicitly the responses of all women to report what we label the ‘macro’ elasticity: this is the change

in the total number of hours worked, considering both intensive and extensive margins.

Table 10: Labor supply elasticites in baseline economy

age 26 age 36 age 46

Extensive 0.85 0.80 0.67

Intensive Margin 25th percentile 1.30 0.85 0.81
Intensive Margin 50th percentile 2.08 1.37 1.29
Intensive Margin 75th percentile 3.87 2.58 2.45

Macro Elasticity 2.55 1.72 1.51

Elasticities are calculated by comparing labour supply in two economies where the dif-
ference between them is that wages in one year in one of the economies are 5% higher
than in the other. This difference generates differences in participation rates, differences
in hours worked for participants and differences in total labour supply. These differences
are converted into elasticities and reported in the table. The different percentiles are
percentiles of the distribution of elasticities defined by age.

Younger women are more elastic to wage increases at the intensive and extensive margins and in

aggregate. One reason may be that they face more uncertainty and have less assets than older women.

The degree of heterogeneity is considerable: for instance in the case of hours, the elasticity at the

median goes from 2.08 for the 26 years old to 1.29 for the 46 years old; for participation, it goes from

0.85 to 0.67. This heterogeneity means the reporting of a single “elasticity” does not make sense: the

effect of wage changes will depend crucially on whose wages are changing. The other notable feature

of this table is that the extensive margin elasticity is smaller than the intensive margin elasticity.23

Finally, we explore the elasticities at the age of 26, dividing women according to their maternity

type, Table 11. We find that those who are young mothers are more elastic at the extensive margin

than childless women or older mothers. Young mothers are the group of women that at the age of 26

are less attached to the labor market because of the fixed childcare cost they face and so are most

23We consider whether this conclusion is robust to a scenario where the amount of idiosyncratic uncertainty is
considerably higher. The extensive elasticity is somewhat lower in this economy, but the intensive elasticity is fairly
similar. Results available on request.
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responsive to wage changes. As in Table 10, one key message here is that there is no single elasticity

which captures behaviour.

Table 11: Labor supply elasticities across maternity groups

All Childless Young
Mother

Older
Mother

Extensive 0.85 0.73 0.97 0.80

Intensive Margin 25th percentile 1.30 1.29 1.29 1.37
Intensive Margin 50th percentile 2.08 2.15 1.99 2.10
Intensive Margin 75th percentile 3.87 3.87 3.59 3.95

Macro Elasticity 2.55 2.46 2.71 2.48

Elasticities are calculated by comparing labour supply in two economies where the difference between
them is that wages in one year in one of the economies are 5% higher than in the other. This difference
generates differences in participation rates, differences in hours worked for participants and differences
in total labour supply. These differences are converted into elasticities and reported in the table. The
different percentiles are percentiles of the distribution of elasticities defined by maternity type.

6.4 Aggregate shocks: elasticities in recessions and booms

In the previous tables, we have shown that there is a substantial amount of heterogeneity in elasticities

in the cross section. This heterogeneity is driven both by the assumptions we have made for the utility

function and heterogeneity in variables that determine heterogeneous responses (such as the level of

consumption or age). This also highlights that differences in the economic environment will lead to

differences in the estimated elasticity for the same underlying preference parameters, as also discussed

by Rogerson and Keane (2012). This issue is likely to be relevant particularly for the extensive margin,

which is driven by non-convexities in the dynamic problem, such as fixed costs of going to work. If

these non-convexities are important, it is likely that a certain sequence of aggregate shocks will tend to

bunch (or disperse more) households around the kinks that determine the extensive margin response.

As a consequence, different distributions of the state variables will trigger different responses in the

aggregate. In particular, whether an economy is in a boom or a recession may well affect labour supply

elasticities.

In Table 12, we analyse the labour supply responses of women aged 26 and 36 to deterministic

changes in wages at different points of the business cycle to highlight how the state of the economy

affects Frisch labour supply responses. In the simulation used to derive these tables, we define a

recession as a situation in which all men and women receive an unexpected negative earnings shock for

four consecutive quarters. Analogously, an expansion is a situation in which all men and women receive

an unexpected positive earnings shock during four consecutive quarters. These wage changes are to
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the permanent wage and will affect the marginal utility of wealth as well as changing intertemporal

incentives. In the context of these different stochastic realisations of the aggregate state, we compare

the labour supply response to a deterministic change in the wage and report the responses in Table

12. In other words, we report how individuals respond to intertemporal incentives in booms compared

to recessions.

The key finding in table 12 is that elasticities are substantially higher in recessions than in the

baseline and slightly higher in the baseline than in booms. There are differences across ages: at age

36, a boom decreases the extensive margin elasticity much more than at age 26.

Table 12: Alternative economies: Labor supply elasticities over the Business Cycle

Elasticities at age 26

Recession Baseline Boom

Extensive 1.03 0.85 0.84

Intensive Margin 25th percentile 1.35 1.30 1.25
Intensive Margin 50th percentile 2.18 2.08 2.03
Intensive Margin 75th percentile 3.86 3.87 3.59

Macro Elasticity 2.81 2.55 2.40

Elasticities at age 36

Recession Baseline Boom

Extensive 0.91 0.80 0.63

Intensive Margin 25th percentile 0.91 0.85 0.81
Intensive Margin 50th percentile 1.44 1.37 1.37
Intensive Margin 75th percentile 2.72 2.58 2.52

Macro Elasticity 1.86 1.72 1.61

Elasticities are calculated by comparing labour supply in two economies where the difference between
them is that wages in one year in one of the economies are 5% higher than in the other. This difference
generates differences in participation rates, differences in hours worked for participants and differences
in total labour supply. These differences are converted into elasticities and reported in the table. The
different percentiles are percentiles of the distribution of elasticities defined by age.
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7 Returns to Experience

In this section, we consider an alternative framework in which returns to experience operate at the

extensive margin; that is, we assume that the returns to experience are not affected by the number

of hours worked but only by the decision to participate. In particular, we assume that human capital

accumulates according to the following process:

lnhft = lnhft−1 + (η0 + η1ht−1) I (Pt−1 = 1)− δI (Pt−1 = 0)

As we mentioned above, in this case the estimates of the MRS and Euler equations remain valid.

However, we need to change the solution for the discrete choices.

We begin by recalibrating the parameter values that were chosen in the baseline economy to fit

some of the features of participation: the fixed cost of working, F̄ , child care price, p, the offered wage

gender gap and ψ0. In addition to these parameters, we also need to calibrate the two parameters

that characterize human capital accumulation function and its depreciation rate. In order to identify

all these parameters we target the female participation rate, the participation rate of mothers, the

average hours worked, the observed wage gender gap, the observed wage growth at two different stages

of life, and the observed depreciation of wages during non-participation. Note that the value of the

statistics on wages are shaped by selection so we need to identify the underlying parameters by solving

the model. We report the implied parameters in Table 13.

In order to assess the ability of the model to account for female labor supply behaviour we provide

several statistics beyond the targets of the calibration. First, analogously to Figure 1, Figure 2

shows life-cycle profiles in the simulations and in the data. Second, Table 14 reports some additional

statistics.

There are two main differences between the model with returns to experience and the baseline

we considered above. First, with returns to experience, 8.8% of workers are at the corner solution,

working the minimum hours possible per quarter, and yet obtaining the return to experience. Second,

the median duration of spells out of the labour force is much longer: those who do exit, exit for

long periods or do not return. This can be seen in the declining participation profiles at ages beyond

35. These patterns are not observed either in the data or in the baseline model. Further, very few

women change their participation decisions. For example, the fraction of women who worked in all

previous periods at the age of 52 is 50.2%, which compares to 42.8% in the economy without returns

to experience.

In table 15, we report the aggregate labour supply response in the economy with returns to

experience. The key finding is that, in contrast to the economy without returns to experience, the

extensive margin elasticity is essentially zero. In this economy, there is a strong incentive to participate

to obtain the return to experience. The calibrated fixed cost of participation is therefore larger in
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Table 13: Returns to experience: Calibrated Parameters and Targets

Parameters Value

Childcare Cost p 2,050
Fixed Cost of Working F̄ 130

Offered Wage Gender Gap yf0 /y
m
0 0.69

Female Human Capital Tech η0 0.03
Female Human Capital Tech η1 -0.018
Depreciation rate δ 0.014
Constant term weight of consumption ψ0 2.89

Targets Data Model

Participation Rate 0.714 0.707
Participation Rate of Mothers 0.550 0.547
Observed Wage Gender Gap 0.767 0.770
Wage Growth (if younger than 40) 0.0192 0.0196
Wage Growth (if older than 40) 0.0142 0.006
Observed Depreciation Rate -0.050 -0.050
Hours worked 432 450

Statistics for individuals aged 25 to 52. Wage growth is over 3 quarters
and depreciation is annual.

Table 14: Returns to Experience: Other Statistics

Data Model

Participation Rate Young Mothers 0.487 0.510
Participation Rate Old Mothers 0.618 0.564
Participation Rate Mothers with Children Aged 3-18 0.714 0.699
Participation Rate Childless Women 0.840 0.743

Average Hours Worked 10th Percentile 195 25
Average Hours Worked 25th Percentile 339 291
Average Hours Worked 50th Percentile 520 483
Average Hours Worked 75th Percentile 520 630
Average Hours Worked 90th Percentile 585 734

Median Duration of Spells (years) 8

Wage 10th Percentile 7.99 7.91
Wage 50th Percentile 14.18 15.14
Wage 90th Percentile 25.47 27.69
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Figure 2: Life-Cycle Profiles, Ret to Exp Model (blue) versus Data (red)
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this model than in the baseline in order to match observed participation rates. This large fixed cost

alongside the strong incentive to participate implies that changes in the current wage make little

difference to the incentive to participate.

Table 15: Returns to Experience: labor supply elasticities

age 26 age 36 age 46

Extensive 0.03 0.02 0.03

Intensive Margin 25th percentile 0.97 0.61 0.71
Intensive Margin 50th percentile 1.58 0.92 1.14
Intensive Margin 75th percentile 2.88 1.54 2.16

Macro Elasticity 1.72 1.25 1.29

It may well be that the small response of the extensive margin labor supply that we find is related

to the simple model of return to experience we have considered. Whether returns to experience operate

in a more subtle manner through intensive margins and the number of hours is a question we leave

for future research. If that is the case, we would need to change substantially the estimation methods

we used in the first part of the paper.

One possibility, of course, is that returns to tenure are important for some occupations and/or skill

levels and not for others. In such a case, it would be necessary to introduce an additional dimension of

heterogeneity that would make the aggregation issues we have stressed repeatedly even more salient.

8 Conclusions

In this paper, we have proposed an integrated approach to evaluate the aggregate and micro response of

labour supply to changes in wages. To frame these issues, we start from a comprehensive specification

of preferences in a life cycle model of consumption and labour supply decisions. Different parameter

values have different implications for labour supply elasticities. Our first and somewhat negative result

is that aggregation issues are important enough to prevent us from talking meaningfully about the

elasticity of labour supply to wages as a single number. This is particularly true for the extensive

margin, or participation decisions: in this case the aggregation problems arise naturally from the

discreteness of the decision involved and for the non-convexities that make such a decision discrete.

We stress that in such a case, aggregate elasticities are likely to vary over time and the business cycle.

We use our framework to study female labour supply in the US, using a long time series of cross

sectional data which contains information on both household consumption, labour supply and wages.
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Our comprehensive approach yields a number of estimates that are characterized by different degrees

of robustness: we obtain the parameters for Marshallian and Hicksian elasticities from intratemporal

first order conditions that are relatively robust, the parameters to estimate the Frisch elasticities from

Euler equations and the parameters relevant for computing the extensive margin elasticities from the

calibration of the full life cycle model which we fit to some life cycle moments. The results of this

estimation exercise yield elasticities that are, on the one hand, very heterogeneous in the cross section

and, on the other, considerably larger than those estimated in many labour supply papers. We believe

that these differences are driven by our explicit use of consumption and the explicit consideration of

the marginal rate of substitution between consumption and leisure.

Finally, we show that aggregate responses of female to labour supply do vary both in the cross

section and over time. This result is important because it shows that the aggregation issues that

are central to our argument have a practical relevance and cannot be ignored. In particular, we find

that female labour supply is considerably more responsive to changes in wages during recession than

booms.

Our two key points in understanding the controversy over micro and macro estimates of elasticities

are first, that previous micro estimates were too low and instead using our consistent and integrated

estimation strategy yields much larger estimates of the elasticities; and second, that there is no

behavioural content in talking about an aggregate elasticity.

The research we present also poses a number of unanswered questions. In particular, whilst we

present some discussion of the effects of return to tenure when it operates through participation, we

have not analyzed in any depth the issue of return to tenure in terms of number of hours. Whether

returns to experience operate through the intensive or extensive margin is an empirical question and

one on which we have not presented much evidence. Should the evidence point to important returns

on the intensive margin, our analysis should be changed substantially.
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Appendix A: Probit results

Probit for wife’s labour force participation

Log earnings of husband -0.258*** (0.016)
husband employed -2.762*** (0.148)
Elderly in HH 0.004 (0.041)
Log family size -0.167*** (0.038)
Age -0.073 (0.054)
Age2 0.003* (0.001)
Age3 /100 -0.003** (0.001)
Child 0-2 -0.597*** (0.024)
Child 3-15 -0.208*** (0.013)
Child 16-17 0.069* (0.028)
Wife: White 0.014 (0.051)
Husband: White -0.146** (0.052)
Wife: Less than high school -1.001*** (0.139)
Wife: High school -0.538*** (0.098)
Wife: College -0.320*** (0.097)
Husband: Less than high school 0.074* (0.034)
Husband: High school 0.137*** (0.025)
Husband: College 0.128*** (0.025)
N 27672

Standard errors in parentheses
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Additional controls education-region-year interactions

Omitted education group is ”university or higher”

Appendix B: Bootstrap procedure

We bootstrap standard errors and confidence intervals for both our MRS and Euler equations. The

two step Heckman-selection procedure for estimating the MRS coefficients is bootstrapped in the

standard way.

Bootstrapping results for our Euler equation requires a more novel approach. This is because we

aggregate our data into cohort groups and then implement an IV procedure. Taking Zt as a vector

of exogenous variables, and Xtand Yt as endogenous variables (with Yt as our dependent variable) we

can reformulate our approach as estimating the equations

Xt = ΠZt + vt

Yt = Xtβ + ut

where vt is a vector of errors in our first stage. These can be thought of as economic shocks

which may have a complicated structure. For instance they may be correlated across time for a

given cohort, or may have an aggregate component which is correlated across cohorts for a given time

period. Errors may also be correlated across the equations for different exogenous variables Zt. We
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will wish to preserve these correlations when we implement our bootstrap procedure. In order to do

this, we attempt to construct the variance-covariance matrix of the residuals v. Rather than filling

in all possible cross-correlations in this matrix, we calculate the following moments for each cohort c,

and equation i

var(vi,c)

cov(vi,ct , vi,ct−1)

cov(vi,ct , vj,ct )

cov(vi,ct , vi,kt )

Setting all other correlations to zero. Thus we impose for instance that there is zero correlation

between vi,ct and vi,kt−1. Unfortunately, there is no guarantee that this matrix will be postive definite. In

our procedure we therefore apply weights to the non-zero elements of our ‘off-diagonal’ matrices - which

give the covariances across different cohorts for the same equation - and to our 1st autocovariances

for residuals for the same cohort and same equation. The weights we apply to these are the maximum

that ensure the resulting matrix is positive defintite: in our case 0.28 and 0.22 respectively.

Once we have this matrix we can Cholesky decompose it to obtain a vector of orthogonalised

residuals

Ω = vv′ = εCC ′ε′

We then draw from the orthogonalised residuals, premultiply them by C and then add them to

ΠZt to reconstruct the endogenous variables (including Y ). We then reestimate our reduced form

equation to obtain a new set of estimates of β.

The values of Zt in our case will depend on the results we obtain from our MRS equation, so

in each iteration of our bootstrap we resample with replacement from from our disaggregated data,

re-run the MRS equation, reaggregate to obtain the cohort averages which make up Zt and then make

a draw from our residuals.

Appendix C: Derivatives

In this section we provide the formulae for the first and second derivatives that are used to calculate

the different elasticities. We define Dt = exp(πzt + ξPt + ζt). Then it is easy to show that:

uc (ct, lt) = DtM
−γ
t αtc

−φ
t (19)

ul (ct, lt) = DtM
−γ
t (1− αt)l−θt (20)
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ucl (ct, lt) = (−γ)DtM
−γ−1
t αt(1− αt)c−φt l−θt (21)

ull (ct, lt) = (−γ)
ul (ct, lt)

Mt
(1− αt)l−θt − ul (ct, lt) θl−1t (22)

ucc (ct, lt) = (−γ)
uc (ct, lt)

Mt
αtc
−φ
t − uc (ct, lt)φc

−1
t (23)

Finally, note that:

ucl (ct, lt) = (−γ)uc (ct, lt) l
−θ
t

(1− αt)
Mt

= (−γ)ul (ct, lt) c
−φ
t

αt
Mt

(24)

These expressions can be used to calculate the Frisch elasticities in the paper. The formula for the

Frisch can be derived as follows:

[
ucc ucl

ucl ull

][
∂c
∂w

∂l
∂w

]
=

[
0

λ

]
[

∂c
∂w

∂l
∂w

]
=

[
ucc ucl

ucl ull

]−1 [
0

λ

]
[

∂c
∂w

∂l
∂w

]
=

1

uccull − u2cl

[
ull −ucl
−ucl ucc

][
0

λ

]

εc =
w

c

∂c

∂w
= − ucucl

uccull − u2cl
w

c

εl =
w

l

∂l

∂w
=

ucucc
uccull − u2cl

w

l

εh =
w

h

∂h

∂l

∂l

∂w
= − ucucc

uccull − u2cl
w

h
εh = −εl

l

h
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